Optimization of Hydrogen-fueled Engine Ignition Timing Based on L-M Neural Network Algorithm
Lijun Wang, Yuan Liu, Yahui Liu, Wei Wang, Yanan Zhao, Zhenzhong Yang
Abstract
In view of the improvement measures of the optimization control algorithm for the ignition system of the hydrogen-fueled engine, the L-M neural network algorithm, Powell neural network algorithm and the traditional BP neural network algorithm are used to optimize the ignition system. The results showed that L-M algorithm not only can accurately predict the hydrogen-fueled engine ignition timing, but also has high precision, high convergence speed, a simple model and other outstanding advantages in the training process, which can greatly reduce the workload of human engine bench tests. Only a small amount of engine bench test is carried out, and the obtained sample data can be used to predict the ignition timing under the whole working conditions. The mean square error of the optimization results based on L-M algorithm arrives at 0.0028 after 100 times of calculation, the maximum value of absolute error arrives at 0.2454, and the minimum value of absolute error arrives at 0.00426.
DOI:
http://doi.org/10.12928/telkomnika.v14i3.2756
Refbacks
There are currently no refbacks.
This work is licensed under a
Creative Commons Attribution-ShareAlike 4.0 International License .
TELKOMNIKA Telecommunication, Computing, Electronics and Control ISSN: 1693-6930, e-ISSN: 2302-9293Universitas Ahmad Dahlan , 4th Campus Jl. Ringroad Selatan, Kragilan, Tamanan, Banguntapan, Bantul, Yogyakarta, Indonesia 55191 Phone: +62 (274) 563515, 511830, 379418, 371120 Fax: +62 274 564604
<div class="statcounter"><a title="Web Analytics" href="http://statcounter.com/" target="_blank"><img class="statcounter" src="//c.statcounter.com/10241713/0/0b6069be/0/" alt="Web Analytics"></a></div> View TELKOMNIKA Stats