Fuzzy C-Means Clustering Based on Improved Marked Watershed Transformation
Cuijie Zhao, Hongdong Zhao, Wei Yao
Abstract
Currently, the fuzzy c-means algorithm plays a certain role in remote sensing image classification. However, it is easy to fall into local optimal solution, which leads to poor classification. In order to improve the accuracy of classification, this paper, based on the improved marked watershed segmentation, puts forward a fuzzy c-means clustering optimization algorithm. Because the watershed segmentation and fuzzy c-means clustering are sensitive to the noise of the image, this paper uses the adaptive median filtering algorithm to eliminate the noise information. During this process, the classification numbers and initial cluster centers of fuzzy c-means are determined by the result of the fuzzy similar relation clustering. Through a series of comparative simulation experiments, the results show that the method proposed in this paper is more accurate than the ISODATA method, and it is a feasible training method.
DOI:
http://doi.org/10.12928/telkomnika.v14i3.2757
Refbacks
There are currently no refbacks.
This work is licensed under a
Creative Commons Attribution-ShareAlike 4.0 International License .
TELKOMNIKA Telecommunication, Computing, Electronics and Control ISSN: 1693-6930, e-ISSN: 2302-9293Universitas Ahmad Dahlan , 4th Campus Jl. Ringroad Selatan, Kragilan, Tamanan, Banguntapan, Bantul, Yogyakarta, Indonesia 55191 Phone: +62 (274) 563515, 511830, 379418, 371120 Fax: +62 274 564604
<div class="statcounter"><a title="Web Analytics" href="http://statcounter.com/" target="_blank"><img class="statcounter" src="//c.statcounter.com/10241713/0/0b6069be/0/" alt="Web Analytics"></a></div> View TELKOMNIKA Stats