Local Binary Fitting Segmentation by Cooperative Quantum Particle Optimization
Desheng Li, Qian He, Liu Chunli, Yu Hongjie
Abstract
Recently, sophisticated segmentation techniques, such as level set method, which using valid numerical calculation methods to process the evolution of the curve by solving linear or nonlinear elliptic equations to divide the image availably, has become being more popular and effective. In Local Binary Fitting (LBF) algorithm, a simple contour is initialized in an image and then the steepest-descent algorithm is employed to constrain it to minimize the fitting energy functional. Hence, the initial position of the contour is difficult or impossible to be well chosen for the final performance. To overcoming this drawback, this work treats the energy fitting problem as a meta-heuristic optimization algorithm and imports a varietal particle swarm optimization (PSO) method into the inner optimization process. The experimental results of segmentations on medical images show that the proposed method is not only effective to both simple and complex medical images with adequate stochastic effects, but also shows the accuracy and high efficiency.
Keywords
local binary fitting; segmentation; particle swarm optimization; Lévy flights; active contour;
DOI:
http://doi.org/10.12928/telkomnika.v15i1.3159
Refbacks
There are currently no refbacks.
This work is licensed under a
Creative Commons Attribution-ShareAlike 4.0 International License .
TELKOMNIKA Telecommunication, Computing, Electronics and Control ISSN: 1693-6930, e-ISSN: 2302-9293Universitas Ahmad Dahlan , 4th Campus Jl. Ringroad Selatan, Kragilan, Tamanan, Banguntapan, Bantul, Yogyakarta, Indonesia 55191 Phone: +62 (274) 563515, 511830, 379418, 371120 Fax: +62 274 564604
<div class="statcounter"><a title="Web Analytics" href="http://statcounter.com/" target="_blank"><img class="statcounter" src="//c.statcounter.com/10241713/0/0b6069be/0/" alt="Web Analytics"></a></div> View TELKOMNIKA Stats