Transformer Fault Diagnosis Method Based on Dynamic Weighted Combination Model

Hongli Yun, Run Liu, Linjian Shangguan

Abstract


The paper tried to integrate the DGA data with the gas production rate, which are the major indexes of transformer fault diagnosis. Duval’s triangle method, BP neural network and IEC three-ratio method were weighted. Firstly, the paper regarded the gas production rate as the independent variables, fitted the cubic curves of the gas production rate and variance of each diagnosis method, and then defined the weights of each algorithm through the data processing method of unequal precision. At last, the dynamic weighted combination diagnosis model was established. That is, the weight is different as the gas production rate changes although the method is identical. The results of diagnosis examples show that the accuracy rate of the weighted combination model is higher than any single algorithm, and it has certain stability as well.


Keywords


transformer fault; weighted combination model; Duval’s triangle; BP neural network; three-ratio method

Full Text:

PDF


DOI: http://doi.org/10.12928/telkomnika.v14i3.3545

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

TELKOMNIKA Telecommunication, Computing, Electronics and Control
ISSN: 1693-6930, e-ISSN: 2302-9293
Universitas Ahmad Dahlan, 4th Campus
Jl. Ringroad Selatan, Kragilan, Tamanan, Banguntapan, Bantul, Yogyakarta, Indonesia 55191
Phone: +62 (274) 563515, 511830, 379418, 371120
Fax: +62 274 564604

View TELKOMNIKA Stats