Open-circuit Fault Diagnosis for Grid-connected NPC Inverter based on Independent Component Analysis and Neural Network
Xiaofeng Wan, Hailin Hu, Yunjun Yu, Liping Kang, Fanpeng Zeng
Abstract
This paper is under in-depth investigation due to suspicion of possible plagiarism on a high similarity index
An open circuit (O-C) fault detection method for grid-connected neutral-point-clamped (NPC) inverter based on independent component analysis (ICA) and neural network (NN) is proposed in this paper. A NN classifier is applied to the fault diagnosis of NPC inverter. The ICA is utilized for the three phase current feature extraction. The ICA reduces the number of NN input neuron. A lower dimensional input space reduces the noise and the training time of NN, the ICA algorithm improves the mapping performance. The proposed algorithm is evaluated with simulation test set. The overall classification performance of the proposed network is more than 97%. The simulation results show that the proposed algorithm performs satisfactorily to fault location.
Keywords
NPC Inverter; fault diagnosis; independent component analysis; neural network;
DOI:
http://doi.org/10.12928/telkomnika.v15i1.3677
Refbacks
There are currently no refbacks.
This work is licensed under a
Creative Commons Attribution-ShareAlike 4.0 International License .
TELKOMNIKA Telecommunication, Computing, Electronics and Control ISSN: 1693-6930, e-ISSN: 2302-9293Universitas Ahmad Dahlan , 4th Campus Jl. Ringroad Selatan, Kragilan, Tamanan, Banguntapan, Bantul, Yogyakarta, Indonesia 55191 Phone: +62 (274) 563515, 511830, 379418, 371120 Fax: +62 274 564604
<div class="statcounter"><a title="Web Analytics" href="http://statcounter.com/" target="_blank"><img class="statcounter" src="//c.statcounter.com/10241713/0/0b6069be/0/" alt="Web Analytics"></a></div> View TELKOMNIKA Stats