Rhetorical Sentence Classification for Automatic Title Generation in Scientific Article
Jan Wira Gotama Putra, Masayu Leylia Khodra
Abstract
In this paper, we proposed a work onrhetorical corpus construction andsentence classification model experiment that specifically could be incorporated in automatic paper title generation task for scientific article. Rhetorical classification is treated as sequence labeling. Rhetorical sentence classification model is useful in task which considers document’s discourse structure. We performed experiments using two domains of datasets: computer science (CS dataset), and chemistry (GaN dataset). We evaluated the models using 10-fold-cross validation (0.70-0.79 weighted average F-measure) as well as on-the-run (0.30-0.36 error rate at best). We argued that our models performed best when handled using SMOTE filter for imbalanced data
Keywords
rhetorical corpus construction, rhetorical classification, automatic title generation, scientific article
DOI:
http://doi.org/10.12928/telkomnika.v15i2.4061
Refbacks
There are currently no refbacks.
This work is licensed under a
Creative Commons Attribution-ShareAlike 4.0 International License .
TELKOMNIKA Telecommunication, Computing, Electronics and Control ISSN: 1693-6930, e-ISSN: 2302-9293Universitas Ahmad Dahlan , 4th Campus Jl. Ringroad Selatan, Kragilan, Tamanan, Banguntapan, Bantul, Yogyakarta, Indonesia 55191 Phone: +62 (274) 563515, 511830, 379418, 371120 Fax: +62 274 564604
<div class="statcounter"><a title="Web Analytics" href="http://statcounter.com/" target="_blank"><img class="statcounter" src="//c.statcounter.com/10241713/0/0b6069be/0/" alt="Web Analytics"></a></div> View TELKOMNIKA Stats