Multi-feature Fusion Using SIFT and LEBP for Finger Vein Recognition

Hardika Khusnuliawati, Chastine Fatichah, Rully Soelaiman

Abstract


In this paper, multi-feature fusion using Scale Invariant Feature Transform (SIFT) and Local Extensive Binary Pattern (LEBP) was proposed to obtain a feature that could resist degradation problems such as scaling, rotation, translation and varying illumination conditions. SIFT feature had a capability to withstand degradation due to changes in the condition of the image scale, rotation and translation. Meanwhile, LEBP feature had resistance to gray level variations with richer and discriminatory local characteristics information. Therefore the fusion technique is used to collect important information from SIFT and LEBP feature.The resulting feature of multi-feature fusion using SIFT and LEBP feature would be processed by Learning Vector Quantization (LVQ) method to determine whether the testing image could be recognized or not. The accuracy value could achieve 97.50%, TPR at 0.9400 and FPR at 0.0128 in optimum condition.  That was a better result than only use SIFT or LEBP feature.


Keywords


finger vein; scale invariant feature transform; local extensive binary pattern; multi-feature fusion; learning vector quantization;

Full Text:

PDF


DOI: http://doi.org/10.12928/telkomnika.v15i1.4443

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

TELKOMNIKA Telecommunication, Computing, Electronics and Control
ISSN: 1693-6930, e-ISSN: 2302-9293
Universitas Ahmad Dahlan, 4th Campus
Jl. Ringroad Selatan, Kragilan, Tamanan, Banguntapan, Bantul, Yogyakarta, Indonesia 55191
Phone: +62 (274) 563515, 511830, 379418, 371120
Fax: +62 274 564604

View TELKOMNIKA Stats