Wavelet Based Feature Extraction for The Indonesian CV Syllables Sound
Domy Kristomo, Risanuri Hidayat, Indah Soesanti
Abstract
This paper proposes the combined methods of Wavelet Transform (WT) and Euclidean Distance (ED) to estimate the expected value of the possibly feature vector of Indonesian syllables. This research aims to find the best properties in effectiveness and efficiency on performing feature extraction of each syllable sound to be applied in the speech recognition systems. This proposed approach which is the state-of-the-art of the previous study consist of three main phase. In the first phase, the speech signal is segmented and normalized. In the second phase, the signal is transformed into frequency domain by using the WT. In the third phase, to estimate the expected feature vector, the ED algorithm is used. Th e result shows the list of features of each syllables can be used for the next research, and some recommendations on the most effective and efficient WT to be used in performing syllable sound recognition.
Keywords
wavelet; euclidean distance; feature extraction;
DOI:
http://doi.org/10.12928/telkomnika.v16i3.5014
Refbacks
There are currently no refbacks.
This work is licensed under a
Creative Commons Attribution-ShareAlike 4.0 International License .
TELKOMNIKA Telecommunication, Computing, Electronics and Control ISSN: 1693-6930, e-ISSN: 2302-9293Universitas Ahmad Dahlan , 4th Campus Jl. Ringroad Selatan, Kragilan, Tamanan, Banguntapan, Bantul, Yogyakarta, Indonesia 55191 Phone: +62 (274) 563515, 511830, 379418, 371120 Fax: +62 274 564604
<div class="statcounter"><a title="Web Analytics" href="http://statcounter.com/" target="_blank"><img class="statcounter" src="//c.statcounter.com/10241713/0/0b6069be/0/" alt="Web Analytics"></a></div> View TELKOMNIKA Stats