Image Fuzzy Enhancement Based on Self-Adaptive Bee Colony Algorithm
Meng Lei, Yao Fan
Abstract
In the image acquisition or transmission, the image may be damaged and distorted due to various reasons; therefore, in order to satisfy people’s visual effects, these images with degrading quality must be processed to meet practical needs. Integrating artificial bee colony algorithm and fuzzy set, this paper introduces fuzzy entropy into the self-adaptive fuzzy enhancement of image so as to realize the self-adaptive parameter selection. In the meanwhile, based on the exponential properties of information increase, it proposes a new definition of fuzzy entropy and uses artificial bee colony algorithm to realize the self-adaptive contrast enhancement under the maximum entropy criterion. The experimental result shows that the method proposed in this paper can increase the dynamic range compression of the image, enhance the visual effects of the image, enhance the image details, have some color fidelity capacity and effectively overcome the deficiencies of traditional image enhancement methods.
DOI:
http://doi.org/10.12928/telkomnika.v12i4.534
Refbacks
There are currently no refbacks.
This work is licensed under a
Creative Commons Attribution-ShareAlike 4.0 International License .
TELKOMNIKA Telecommunication, Computing, Electronics and Control ISSN: 1693-6930, e-ISSN: 2302-9293Universitas Ahmad Dahlan , 4th Campus Jl. Ringroad Selatan, Kragilan, Tamanan, Banguntapan, Bantul, Yogyakarta, Indonesia 55191 Phone: +62 (274) 563515, 511830, 379418, 371120 Fax: +62 274 564604
<div class="statcounter"><a title="Web Analytics" href="http://statcounter.com/" target="_blank"><img class="statcounter" src="//c.statcounter.com/10241713/0/0b6069be/0/" alt="Web Analytics"></a></div> View TELKOMNIKA Stats