Self-learning PID Control for X-Y NC Position Table with Uncertainty Base on Neural Network
Hu Xiaoping, Wang Chao, Zhang Wenhui, Ma Jing
Abstract
An adaptive radical basis function (RBF) neural network PID control scheme for X-Y position table is proposed by the paper. Firstly, X-Y position table model is established, controller based on neutral network is used to learn adaptive and compensate uncertainty model of X-Y position table, neutral network is used to study model. PID neural network controller base on augmented variable method is designed. PID controller is used as assistant direction error controller, neural network parameters base on stochastic gradient algorithm can be adjust adaptive on line. The simulation results show that the presented controller has important engineering value.
Keywords
RBF neural network;Self-learning control;X-Y NC position table;PID control
DOI:
http://doi.org/10.12928/telkomnika.v12i2.73
Refbacks
There are currently no refbacks.
This work is licensed under a
Creative Commons Attribution-ShareAlike 4.0 International License .
TELKOMNIKA Telecommunication, Computing, Electronics and Control ISSN: 1693-6930, e-ISSN: 2302-9293Universitas Ahmad Dahlan , 4th Campus Jl. Ringroad Selatan, Kragilan, Tamanan, Banguntapan, Bantul, Yogyakarta, Indonesia 55191 Phone: +62 (274) 563515, 511830, 379418, 371120 Fax: +62 274 564604
<div class="statcounter"><a title="Web Analytics" href="http://statcounter.com/" target="_blank"><img class="statcounter" src="//c.statcounter.com/10241713/0/0b6069be/0/" alt="Web Analytics"></a></div> View TELKOMNIKA Stats