Self-learning PID Control for X-Y NC Position Table with Uncertainty Base on Neural Network

Hu Xiaoping, Wang Chao, Zhang Wenhui, Ma Jing

Abstract


An adaptive radical basis function (RBF) neural network PID control scheme for X-Y position table is proposed by the paper. Firstly, X-Y position table model is established, controller based on neutral network is used to learn adaptive and compensate uncertainty model of X-Y position table, neutral network is used to study model. PID neural network controller base on augmented variable method is designed. PID controller is used as assistant direction error controller, neural network parameters base on stochastic gradient algorithm can be adjust adaptive on line. The simulation results show that the presented controller has important engineering value.


Keywords


RBF neural network;Self-learning control;X-Y NC position table;PID control

Full Text:

PDF


DOI: http://doi.org/10.12928/telkomnika.v12i2.73

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

TELKOMNIKA Telecommunication, Computing, Electronics and Control
ISSN: 1693-6930, e-ISSN: 2302-9293
Universitas Ahmad Dahlan, 4th Campus
Jl. Ringroad Selatan, Kragilan, Tamanan, Banguntapan, Bantul, Yogyakarta, Indonesia 55191
Phone: +62 (274) 563515, 511830, 379418, 371120
Fax: +62 274 564604

View TELKOMNIKA Stats