The New Multipoint Relays Selection in OLSR using Particle Swarm Optimization

Reza Firsandaya Malik, Tharek Abdul Rahman, Razali Ngah, Siti Zaiton Mohd, Hashim Hashim

Abstract


The standard optimized link state routing (OLSR) introduces an interesting concept, the multipoint relays (MPRs), to mitigate message overhead during the flooding process. This paper propose a new algorithm for MPRs selection to enhance the performance of OLSR using particle swarm optimization sigmoid increasing inertia weight (PSOSIIW). The sigmoid increasing inertia weight has significance improve the particle swarm optimization (PSO) in terms of simplicity and quick convergence towards optimum solution. The new fitness function of PSOSIIW, packet delay of each node and degree of willingness are introduced to support MPRs selection in OLSR. The throughput, packet loss and end-to-end delay of the proposed method are examined using network simulator 2 (ns2).  Overall results indicate that OLSR-PSOSIIW has shown good performance compared to the standard OLSR and OLSR-PSO, particularly for the throughput and end-to-end delay. Generally the proposed OLSR-PSOSIIW shows advantage of using PSO for optimizing routing paths in the MPRs selection algorithm.


Full Text:

PDF

References


D. B. Johnson, D. A. Maltz. Mobile Computing. Kluwer Academic Publisher. 1996: 153-181.

C. E. Perkins, E. M. Royer. Ad-hoc On Demand Distance Vector Routing. Proceedings of the Second IEEE Workshop on Mobile Computer Systems and Applications. New Orleans, Louisiana; 1999: 90.

C. E. Perkins, P. Bhagwat. Highly Dynamic Destination-Sequenced Distance-Vector (DSDV) for Mobile Computers. Proceedings of the conference on communications architectures, protocols and applications. New York; 1994: 234-244.

T. Clausen, P. Jacquet. Optimized Link State Routing Protocol (OLSR). Internet Engineering Task Force (IETF). RFC: 3626; 2003.

M. S. Corson, S. Papademetriou, P. Papadopoulos, V. Park, A. Qayyum. An Internet MANET Encapsulation Protocol (IMEP) Specification. Internet Engineering Task Force (IETF). Internet Draft: 01; 1998.

L. Viennot. Complexity Results on Election of Multipoint Relays in Wireless Networks. INRIA. Technical Report; 1998.

P. Minet, P. Jacquet, A. Laouiti, L. Viennot. Performance of Multipoint Relaying in Ad Hoc Mobile Routing Protocols. INRIA. Technical Report; 2002.

P. Minet, P. Jacquet, A. Laouiti, L. Viennot. Performance Analysis of OLSR Multipoint Relay Flooding in Two Ad Hoc Wireless Network Models. INRIA. Technical Report; 2002.

A. Qayyum, L. Viennot, A. Laouiti. Multipoint Relaying: An Efficient Technique for Flooding in Mobile Wireless Networks. INRIA. Technical Report; 2002.

D. Nguyen, P. Minet. Analysis of Multipoint relays Selection in the OLSR Routing Protocol with and without QoS Support.INRIA; 2006.

H. Badis, A. Munaretto, K. Al Agha, G. Pujolle. Optimal Path Selection in a Link State QoS Routing Protocol. Proceedings of the. IEEE 59th Vehicular Technology Conference. Milan, Italy; 17-19 May, 2004: 2570-2574.

Belhassen, M., Belghith, A., Abid, M.A. Performance Evaluation of a Cartography Enhanced OLSR for Mobile Multi-Hop Ad Hoc Networks. Proceedings of the Wireless Advanced. London; 20 - 22 June, 2011.

Chizari, H., Hosseini, M., Salleh, S., Abdul Razak, S., Abdullah. A. EF-MPR: a new energy efficient multi-point relay selection algorithm for MANET. The Journal of Supercomputing; 2010: 1-18.

Zhihao Guo, Behnam Malakooti. Predictive Delay Metric for OLSR Using Neural Networks. Journal Wireless Networks; 2009.

J. Kennedy, R.C. Eberhart. Particle Swarm Optimization. Proceedings of the. 4th IEEE International Conference on Neural Networks; 1995: 1942-1948.

R.C. Eberhart, J. Kennedy. A New Optimizer using Particle Swarm Theory. Proceedings of the. 6th International Symposium on Micro Machine and Human Science; 1995: p. 39-43.

A. P. Engelbrecht. Fundamentals of Computational Swarm Intelligence. John Willey & Sons Inc; 2005: 93

J. Kennedy, R.C. Erberhart. A Discrete Binary Version of The Particle Swarm Algorithm. Proceedings of the Conference on Systems, Man, and Cybernetics. Florida, USA; 1997.

Y. Shi, R.C. Erberhart. Parameter Selection in Particle Swarm Optimization. Proceedings of the 7th Annual Conference on Evolution Computation; 1998: 591-601.

M. Lovbjerg, T.K. Rasmussen, T. Krink. Hybrid Particle Swarm Optimizer with Breeding and Subpopulation. Proceedings of the Third Genetic and Evolutionary Computation Congress. San Fransisco, USA; 2001: 469-476.

Y. Shi, R.C. Eberhart. Empirical Study of Particle Swarm Optimization. Proceedings of the. Congress on Evolutionary Computation; 1999: 1945-1950.

Yong-ling Zheng, Long-hua Ma, Li-yan Zhang, Ji-xin Qian. Empirical Study of Particle Swarm Optimizer with an Increasing Inertia Weight. Proceedings of the IEEE Congress on Evolutionary Computation; 2003.

A. Adriansyah, S.H.M. Amin. Analytical and Empirical Study of Particle Swarm Optimization with a Sigmoid Decreasing Inertia Weight. Proceedings of the Regional Conference on Engineering and Science. Johor; 2006.

R. F. Malik, T. A. Rahman, R. Ngah, S. Z. Mohd. Hashim. New Particle Swarm Optimizer with Sigmoid Increasing Inertia Weight. International Journal of Computer Science and Security; 2007.

Y. Shi, R.C. Erberhart. Parameter Selection in Particle Swarm Optimization. Proceedings of the 7th Annual Conference on Evolution Computation; 1998: 591-601.

Saaidal Razalli Azzuhri, Suhazlan Suhaimi, K. Daniel Wong. Enhancing the 'Willingness' on the OLSR Protocol to Optimize the Usage of Power Battery Power Sources Left. International Journal of Engineering. 2008; 2(3).

Cholatip Yawut, Beatrice Paillassa, Riadh Dhaou. Mobility Versus Density Metric for OLSR Enhancement. Proceedings of The 3rd Asian Internet Engineering Conference (AINTEC). Phuket, Thailand; 27-29 November, 2007: 2–17.

Ros, F. J. UM-OLSR, an implementation of the OLSR (Optimized Link State Routing) protocol for the ns-2 network simulator. Available: http://masimum.dif.um.es/?Software:UM-OLSR.

Chunlin Ji, Yangyang Zhang, Shixing Gao, Ping Yuan, Zhe Li. Particle Swarm Optimization for Mobile Adhoc Networks Clustering. Proceedings of the IEEE International Conference on Networking, Sensing and Control. Taipei. 21-23 March, 2004.

R. Soleimanzadeh, B. J. Farahani, M. Fathy. PSO based Deployment Algorithms in Hybrid Sensor Networks. IJCSNS International Journal of Computer Science and Network Security. 2010, 10 (7).




DOI: http://doi.org/10.12928/telkomnika.v10i2.804

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

TELKOMNIKA Telecommunication, Computing, Electronics and Control
ISSN: 1693-6930, e-ISSN: 2302-9293
Universitas Ahmad Dahlan, 4th Campus
Jl. Ringroad Selatan, Kragilan, Tamanan, Banguntapan, Bantul, Yogyakarta, Indonesia 55191
Phone: +62 (274) 563515, 511830, 379418, 371120
Fax: +62 274 564604

View TELKOMNIKA Stats