Nonlinear Model Predictive Controller Design for Identified Nonlinear Parameter Varying Model
Abstract
Full Text:
PDFReferences
Palma F D, Magni L A. Multi-model Structure for Model Predictive Control. Annual Reviews in Control. 2004; 28: 47–52.
Perez E, Blasco X, Garcia-Nieto S and Sanchis J. Diesel Engine Identification and PredictiveControl using Wiener and Hammerstein Models. In: EEE International Conference on Control Applications, CCA. 2006: 2417–2423.
Gomez JC, Jutan A, Baeyens E. Wiener Model Identification and Predictive Control of a pHNeutralisation Process. Proceedings of the IEE ControlTheory and Applications. 2004: 151: 329–338.
Akesson B M, Toivonen H T, Waller J B, and Nystrom R H. Neural Network Approximation of aNonlinear Model Predictive Controller Applied to a pHNeutralization Process. Computers and Chemical Engineering. 2005; 29: 323–335.
Zhu YC, et. al. Multivariable process identification for MPC: the asymptotic method and its applications. Journal of Process Control.1998; 8(2): 101-115.
Zuhua Xu, Zhu Y C, et. al. Nonlinear MPC using an Identified LPV Model. Ind. Eng. Chem. Res. 2009; 48: 3043-3051.
Zhu YC, et. al. A Method of LPV Model identification for control. The international Federation of Automatic Control. Seoul, Korea. July 2008: 6-11.
Zhu Y C, et. al. Identification and MPC control of a circulation Fluidized Bed Boiler using an LPV Model. Dynamics and Control of Process Systems. Leuven, Belgium. July 2010: 5-7.
Huang Daoping et. al. Multivariable Nonlinear Predictive Control Based on an Integrating Model: Control Theory and Applications. 1999; 16(1): 38-42.
Zhu YC. Multi variable System Identification for Process Control. Endhoven, Pergamon, Chapter 5, 6
V Laurain, M Gilson, R Tóth, H Garnier. Refined instrumental variable methods foridentification of LPV Box–Jenkins models. Automatica. 2010; 46(6): 959–967.
Yu Zhao et. al. Prediction error method for identification of LPV models. Journal of process control. 2011; 22(1): 180-193.
M. Butcher, A. Karimi. Data-driven tuning of linear parameter-varying precompensators. Int. J. Adapt. Control Signal Process. 2010; 24(7): 592–609.
M. Butcher, A. Karimi, R. Longchamp. On the consistency of certain identification methods for linear parameter varying systems. in 17th IFAC World Congress. Seoul, Korea. July 6–112008: 4018–4023.
Mardiyono, Reni Suryanita, Azlan Adnan. Intelligent Monitoring System on Prediction of Building Damage Index using Neural- Network. TELKOMNIKA. 2012; 10(1):155-164.
D Harikrishna, N V Srikanth. Dynamic Stability Enhancement of Power Systems Using Neural-Network Controlled Static-Compensator.TELKOMNIKA. 2012; 10(1): 9-16.
DOI: http://doi.org/10.12928/telkomnika.v10i3.831
Refbacks
- There are currently no refbacks.
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
TELKOMNIKA Telecommunication, Computing, Electronics and Control
ISSN: 1693-6930, e-ISSN: 2302-9293
Universitas Ahmad Dahlan, 4th Campus
Jl. Ringroad Selatan, Kragilan, Tamanan, Banguntapan, Bantul, Yogyakarta, Indonesia 55191
Phone: +62 (274) 563515, 511830, 379418, 371120
Fax: +62 274 564604