Integrated Social Media Knowledge Capture in Medical Domain of Indonesia
Kridanto Surendro, Dicky Prima Satya, Farrell Yodihartomo
Abstract
The Social Media Platforms, as the one of largest part of today data traffic on the Internet, disseminate a vast volume of information, including medical information in it. Knowledge management system (KMS) approach is applied with purpose to capture, maintain, and manage tacit or explicit knowledge available and collected within the social media platforms, organization’s database, knowledge base, or document repository. By adding Indonesian Natural Language Processing (InaNLP), Machine Learning and Data Mining approach, our research has proposed a framework which is theoretically designed to improve the previous research related to social media knowledge capture model and enhance its accuracy and reliability of knowledge retrieved compared to previous knowledge capture model. This system mainly aimed for medical practitioner to give a quick suggestion of the diseases regarding to the early diagnose which has been taken in the first place. On this current research state, the pre-processing phase of the framework implementation and knowledge presentation is our main concernto maximize the information value for the knowledge users and also to reduce the language issues in texts such as ambiguity, inconsistency, use of slang vocabulary, etc.According to this research’s goal, we have designed an algorithm to extract feature from dataset.
Keywords
knowledge management system; natural language processing; data mining; machine learning; medical knowledge
DOI:
http://doi.org/10.12928/telkomnika.v16i4.8320
Refbacks
There are currently no refbacks.
This work is licensed under a
Creative Commons Attribution-ShareAlike 4.0 International License .
TELKOMNIKA Telecommunication, Computing, Electronics and Control ISSN: 1693-6930, e-ISSN: 2302-9293Universitas Ahmad Dahlan , 4th Campus Jl. Ringroad Selatan, Kragilan, Tamanan, Banguntapan, Bantul, Yogyakarta, Indonesia 55191 Phone: +62 (274) 563515, 511830, 379418, 371120 Fax: +62 274 564604
<div class="statcounter"><a title="Web Analytics" href="http://statcounter.com/" target="_blank"><img class="statcounter" src="//c.statcounter.com/10241713/0/0b6069be/0/" alt="Web Analytics"></a></div> View TELKOMNIKA Stats