Stochastic Computing Correlation Utilization in Convolutional Neural Network Basic Functions

Hamdan Abdellatef, Mohamed Khalil Hani, Nasir Shaikh Husin, Sayed Omid Ayat

Abstract


In recent years, many applications have been implemented in embedded systems and mobile Internet of Things (IoT) devices that typically have constrained resources, smaller power budget, and exhibit "smartness" or intelligence. To implement computation-intensive and resource-hungry Convolutional Neural Network (CNN) in this class of devices, many research groups have developed specialized parallel accelerators using Graphical Processing Units (GPU), Field-Programmable Gate Arrays (FPGA), or Application-Specific Integrated Circuits (ASIC). An alternative computing paradigm called Stochastic Computing (SC) can implement CNN with low hardware footprint and power consumption. To enable building more efficient SC CNN, this work incorporates the CNN basic functions in SC that exploit correlation, share Random Number Generators (RNG), and is more robust to rounding error. Experimental results show our proposed solution provides significant savings in hardware footprint and increased accuracy for the SC CNN basic functions circuits compared to previous work.

Keywords


convolutional neural network; stochastic computing; correlation;

Full Text:

PDF


DOI: http://doi.org/10.12928/telkomnika.v16i6.8955

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

TELKOMNIKA Telecommunication, Computing, Electronics and Control
ISSN: 1693-6930, e-ISSN: 2302-9293
Universitas Ahmad Dahlan, 4th Campus
Jl. Ringroad Selatan, Kragilan, Tamanan, Banguntapan, Bantul, Yogyakarta, Indonesia 55191
Phone: +62 (274) 563515, 511830, 379418, 371120
Fax: +62 274 564604

View TELKOMNIKA Stats