Stochastic Computing Correlation Utilization in Convolutional Neural Network Basic Functions
Hamdan Abdellatef, Mohamed Khalil Hani, Nasir Shaikh Husin, Sayed Omid Ayat
Abstract
In recent years, many applications have been implemented in embedded systems and mobile Internet of Things (IoT) devices that typically have constrained resources, smaller power budget, and exhibit "smartness" or intelligence. To implement computation-intensive and resource-hungry Convolutional Neural Network (CNN) in this class of devices, many research groups have developed specialized parallel accelerators using Graphical Processing Units (GPU), Field-Programmable Gate Arrays (FPGA), or Application-Specific Integrated Circuits (ASIC). An alternative computing paradigm called Stochastic Computing (SC) can implement CNN with low hardware footprint and power consumption. To enable building more efficient SC CNN, this work incorporates the CNN basic functions in SC that exploit correlation, share Random Number Generators (RNG), and is more robust to rounding error. Experimental results show our proposed solution provides significant savings in hardware footprint and increased accuracy for the SC CNN basic functions circuits compared to previous work.
Keywords
convolutional neural network; stochastic computing; correlation;
DOI:
http://doi.org/10.12928/telkomnika.v16i6.8955
Refbacks
There are currently no refbacks.
This work is licensed under a
Creative Commons Attribution-ShareAlike 4.0 International License .
TELKOMNIKA Telecommunication, Computing, Electronics and Control ISSN: 1693-6930, e-ISSN: 2302-9293Universitas Ahmad Dahlan , 4th Campus Jl. Ringroad Selatan, Kragilan, Tamanan, Banguntapan, Bantul, Yogyakarta, Indonesia 55191 Phone: +62 (274) 563515, 511830, 379418, 371120 Fax: +62 274 564604
<div class="statcounter"><a title="Web Analytics" href="http://statcounter.com/" target="_blank"><img class="statcounter" src="//c.statcounter.com/10241713/0/0b6069be/0/" alt="Web Analytics"></a></div> View TELKOMNIKA Stats