Power Estimation for Wearable Piezoelectric Energy Harvester

Noor Hazrin Hany Mohamad Hanif, Mohd Zulhilmi Zain, Mas Ehsan Rohaimie, Huda Azam

Abstract


The aim of this research work is to estimate the amount of electricity produced to power up wearable devices using a piezoelectric actuator, as an alternative to external power supply. A prototype of the device has been designed to continuously rotate a piezoelectric actuator mounted on a cantilever beam. A MATLAB® simulation was done to predict the amount of power harvested from human kinetic energy. Further simulation was conducted using COMSOL Multiphysics® to model a cantilever beam with piezoelectric layer. With the base excitation and the presence of tip mass at the beam, the natural frequencies and mode shapes have been analyzed to improve the amount of energy harvested. In this work, it was estimated that a maximum amount of power that could be generated is 250 μW with up to 5.5V DC output. The outcome from this research works will aid in optimising the design of the energy harvester. This research work provides optimistic possibility in harvesting sufficient energy required for wearable devices.

Keywords


piezoelectric; energy harvester; wearable;

Full Text:

PDF


DOI: http://doi.org/10.12928/telkomnika.v16i3.9034

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

TELKOMNIKA Telecommunication, Computing, Electronics and Control
ISSN: 1693-6930, e-ISSN: 2302-9293
Universitas Ahmad Dahlan, 4th Campus
Jl. Ringroad Selatan, Kragilan, Tamanan, Banguntapan, Bantul, Yogyakarta, Indonesia 55191
Phone: +62 (274) 563515, 511830, 379418, 371120
Fax: +62 274 564604

View TELKOMNIKA Stats