Detecting fake news through deep learning: a current systematic review

Idza Aisara Norabid, Masita Jalil, Rozniza Ali, Noor Hafhizah Abd Rahim

Abstract


This systematic review explores the domain of deep learning-based fake new detection employing advanced search practices on Scopus and Web of Science (WoS) databases with keywords “fake news,” “deep learning,” and “method.” The study encompasses 33 articles categorized into three main themes: i) dataset and benchmarking for fake news detection, ii) multimodal approaches for fake news detection, and iii) deep learning applications and techniques for fake news detection. The analysis reveals the significance of curated datasets and robust benchmarking in improving the efficacy of fake news detection models. Additionally, the review highlights the emergence of multimodal approaches that integrate textual and visual information for improved detection accuracy. The findings clarify the essential role of deep learning applications, emphasizing the development of sophisticated models for automated identification of fake news. This systematic study adds to a thorough grasp of current research trends and offers insightful information for future developments in the field of deep learning-based false news identification.

Keywords


deep learning; machine learning; misinformation detection; natural language processing; systematic review;

Full Text:

PDF


DOI: http://doi.org/10.12928/telkomnika.v23i2.26110

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

TELKOMNIKA Telecommunication, Computing, Electronics and Control
ISSN: 1693-6930, e-ISSN: 2302-9293
Universitas Ahmad Dahlan, 4th Campus
Jl. Ringroad Selatan, Kragilan, Tamanan, Banguntapan, Bantul, Yogyakarta, Indonesia 55191
Phone: +62 (274) 563515, 511830, 379418, 371120
Fax: +62 274 564604

View TELKOMNIKA Stats