An artificial neural network approach for detecting skin cancer
Sugiarti Sugiarti, Yuhandri Yuhandri, Jufriadif Na'am, Dolly Indra, Julius Santony
Abstract
This study aims to present diagnose of melanoma skin cancer at an early stage. It applies feature extraction method of the first order for feature extraction based on texture in order to get high degree of accuracy with method of classification using artificial neural network (ANN). The method used is training and testing phases with classification of Multilayer Perceptron (MLP) neural network. The results showed that the accuracy of test image with 4 sets of training for image not suspected of melanoma and melanoma with the lowest accuracy of 80% and the highest accuracy of 88.88%, respectively. The 4 sets of training used consisted of 23 images. Of the 23 images used as a training consisted of 6 as not suspected of melanoma images and 17 as suspected melanoma images.
Keywords
artificial neural network; first-order feature extraction; melanoma; multilayer perceptron;
DOI:
http://doi.org/10.12928/telkomnika.v17i2.9547
Refbacks
There are currently no refbacks.
This work is licensed under a
Creative Commons Attribution-ShareAlike 4.0 International License .
TELKOMNIKA Telecommunication, Computing, Electronics and Control ISSN: 1693-6930, e-ISSN: 2302-9293Universitas Ahmad Dahlan , 4th Campus Jl. Ringroad Selatan, Kragilan, Tamanan, Banguntapan, Bantul, Yogyakarta, Indonesia 55191 Phone: +62 (274) 563515, 511830, 379418, 371120 Fax: +62 274 564604
<div class="statcounter"><a title="Web Analytics" href="http://statcounter.com/" target="_blank"><img class="statcounter" src="//c.statcounter.com/10241713/0/0b6069be/0/" alt="Web Analytics"></a></div> View TELKOMNIKA Stats